Arabidopsis - a powerful model system for plant cell wall research.
نویسندگان
چکیده
Plant cell walls are composites of various carbohydrates, proteins and other compounds. Cell walls provide plants with strength and protection, and also represent the most abundant source of renewable biomass. Despite the importance of plant cell walls, comparatively little is known about the identities of genes and functions of proteins involved in their biosynthesis. The model plant Arabidopsis and the availability of its genome sequence have been invaluable for the identification and functional characterization of genes encoding enzymes involved in plant cell-wall biosynthesis. This review covers recent progress in the identification and characterization of genes encoding proteins involved in the biosynthesis of Arabidopsis cell-wall polysaccharides and arabinogalactan proteins. These studies have improved our understanding of both the mechanisms of cell-wall biosynthesis and the functions of various cell-wall polymers, and have highlighted areas where further research is needed.
منابع مشابه
Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics
The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamic...
متن کاملSeed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research.
Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of ...
متن کاملRole of the AtClC genes in regulation of root elongation in Arabidopsis
The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...
متن کاملVASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system.
We previously showed that the VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 genes, which encode NAM/ATAF/CUC domain protein transcription factors, act as key regulators of xylem vessel differentiation. Here, we report a glucocorticoid-mediated posttranslational induction system of VND6 and VND7. In this system, VND6 or VND7 is expressed as a fused protein with the activation domain of the herpes...
متن کاملGenomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis.
Monocotyledons and dicotyledons are distinct, not only in their body plans and developmental patterns, but also in the structural features of their cell walls. The recent completion of the rice (Oryza sativa) genomic sequence and publication of the sequence data, together with the completed database of the Arabidopsis thaliana genome, provide the first opportunity to compare the full complement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 61 6 شماره
صفحات -
تاریخ انتشار 2010